
Cuby
An Augmented Generative Arts Application

Marlene Mayr, Anna Moser

September 05, 2020

Abstract

Cuby is an augmented augmented reality application for mobile devices, designed
for offering users a visual snapshot of their environment. The project combines aug-
mented reality, generative arts and device input processing. The application gener-
ates a structure from parameters specific to the user’s environment. The structure’s
base is a cube, textured with a height and satellite map according to the users loca-
tion. Surrounding particles change its shape according to the ambient noise and its
color based on colors captured by the camera. Using and adjusting these individual
parameters, each user is able to generate a unique and personal Cuby. The project
is realized with Unity and Unity’s AR Foundation1 package to cover both iOS and
Android based devices.

1https://unity.com/unity/features/arfoundation

1

Contents

1 Aims and Context 3
1.1 Initial Focus . 3

1.1.1 Device Data . 3
1.1.2 Visual Representation . 3
1.1.3 Technical Starting Point . 3

1.2 References . 4

2 Project Details 6
2.1 Features . 7

2.1.1 Location . 7
2.1.2 Sound . 7
2.1.3 Colors . 8
2.1.4 Timestamp . 9
2.1.5 Age . 11

2.2 Info card . 11
2.3 Serialization . 12
2.4 Sharing . 13
2.5 Problems . 13
2.6 Android Version . 13

3 System Architecture 15
3.1 Statecharts . 15
3.2 Features . 16
3.3 Menus . 17
3.4 AR Foundation . 17
3.5 Other Classes . 17

4 Summary 18

References 19

2

Chapter 1

Aims and Context

1.1 Initial Focus
The initial focus was to represent the users environment in a meaningful way, where it
is to be determined what meaningful might look like. Another main focus was how to
realize an AR application on a mobile device, working with the users device data, such
as time and location.

1.1.1 Device Data
The main focus of the project is capturing the users environment in an abstract structure
in augmented reality. To achieve a unique structure for every user, one goal was to
determine which data could be fetched from the user’s device and how this data affects
the structure. The data should be processed and presented on Cuby in a meaningful
way, therefore the users should be able to easily comprehend changes in the data and
view them on the structure immediately. Additionally, the user should be given control
to alter the parameters to his preferences to some extent. It was decided to base the
structure on the user’s location, a sound sequence of the ambient noise, the colors in
the room (captured by processing a snapshot of the camera) and the creation date and
time.

1.1.2 Visual Representation
A frequently asked question was how it is possible to capture a room’s vibe and which
characteristics it includes. One major difference is the overall color scheme of a room. As
represented in image ?? two rooms show completely different color palletes and, there-
fore, a different mood and feeling. Furthermore the ambient sound of a room changes
the mood of an environment. One main aim of this project was to capture all these char-
acteristics of a room and visualize it in a way so that a user gets a proper impression
of a Cuby from another person.

1.1.3 Technical Starting Point
As research on similar projects revealed, generative arts is not frequently represented
in AR applications, especially not for mobile devices. This fact formed the initial mo-

3

1. Aims and Context 4

tivation for the project, which consolidated in generative arts, augmented reality and
device specific input processing. Mobile development with Unity and, therefore, address-
ing limitations of smartphones’ performances posed an open issue. During the search
for a appropriate plugin for realizing such a mobile AR application, ARKit, ARCore,
Vuforia and AR Foundation competed against each other. Since the application should
support both, Android and iOS devices, Unity’s AR Foundation package was chosen.
AR Foundation includes core features from ARKit, ARCore, Magic Leap and HoloLense
and enables deploying across multiple mobile devices.

(a) (b)

Figure 1.1: First steps with AR Foundation.

1.2 References

One project references was ARBrush [1], which realized a three-dimensional drawing
tool with the ARKit plugin for Unity. Another inspiration was an AR art project called
Moto wall [6] in figure 1.2, which extends a mural wall with different shapes in AR on
mobile devices. Especially the user interaction with these application raised awareness
and provided a solid discussion base for Cuby.

1. Aims and Context 5

Figure 1.2: Moto wall is an AR art project, where users can view and walk around 42
digital variations of basic shapes. Image Source: [6]

(a) (b)

(c) (d)

Figure 1.3: (a) shows the 4th Wall AR App, which invites users to discover drawings in
AR by Nancy Baker Cahill [2]. Image (b) is a visual concert projected onto a wall [8]. The
students project in (c) shows an art installation [7] and (d) a visualization in a medical
VR application from Innerspace [4].

Chapter 2

Project Details

Initially, we tried out some AR Foundation examples1. Playing around with a few exist-
ing scenes provided us with better understanding of the package, for example the plane
and feature detection as well as using raycasts for the interaction with these surfaces.
Figure 1.1 shows two of these basic applications. Having the project goals in mind, at
this point we decided to proactively switch to Unity’s newer Universal Render Pipeline2

(URP) which is compatible with its new Shader Graph3 and Visual Effects Graph4

packages. It was said that they reduce performance or on the other hand improve on
the visual outcome and URP is optimized for mobile development.

The first technology that was added to the project should assist with demonstrating
the coordinates of the smartphone. With the assistance of the Mapbox API5 for Unity,
the user’s location is used to query a height and satellite map in various zoom faactors,
which are combined into a material used on the main cube. The cube comes with a
shiny black, metal like texture by default, which changes as soon as the user enables
the location in the menu.

The heart of the structure is covered in two kinds of particles. One particle system
gets influenced by the soundscape recorded by the user. A sound wave is generated
and the particles react accordingly. The other particle system represents the age of
Cuby by extending their trails with increasing age. The latter particles first appear in a
default color and change as soon as the user activates the color feature. By processing
the current camera image on the screen, the most dominant colors of the capture get
extracted and its the users choice which of the colors are added to the structure.

In addition to the age, a sun or moon are placed in the Cuby’s orbit depending on
the current time when adding the feature. The sun and moon optionally leave a golden
glow or blue shine on the cube’s surface.

Next to the structure, a card styled like a museum label gives a quick overview about
all enabled parameters.

1https://github.com/Unity-Technologies/arfoundation-samples
2https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.0/manual/index.html
3https://unity.com/shader-graph
4https://unity.com/visual-effect-graph
5https://www.mapbox.com

6

2. Project Details 7

2.1 Features
As already outlined briefly, this section describes the implementation, issues and solu-
tions of these main features.

2.1.1 Location

The user’s location changes the material of the cube. With the Mapbox API 6 we get
a heightmap and satellite image from the user’s current location. The Mapbox API
was the only API that provided detailed and consistent elevation data all over the
world. This was especially useful since one project partner worked on the project from
Finland, where our first tested map API did not have any data for. Using Mapbox
for our application was a bit of an overkill, because Mapbox is a huge API that offers
extensive map data and we only needed one to two simple maps. Strangely enough,
the Unity version of this large tool was highly focused on spherical map representations
which only used the satellite image for albedo maps. It was hard to extract a simple
feature, namely getting the heightmap with a single web query, but this worked very well
in the end. However this also was where the first troubles came up with using Unity’s
URP. After extensive research we found out that even though the other new render
pipeline and the old one both implemented a height map functionality that distorts the
geometry, URP did not. This was resolved by using a normal map but was noted that
it might be exchanged in the future by our own heightmap implementation.

2.1.2 Sound
Sound does not equal sound. There is a lot you have to consider when you want to
capture the volume of a microphone. Should Cuby react to the absolute amplitude or
relative to the general noise level of the environment? This means that either the full
range of loudness or temporal loudness changes are represented. Or does it need a cali-
bration with user input at the beginning for more accuracy? Depending on the desired
recording content, the maximum amplitude could be reduced to provide a wider range
for the detected signal and therefore finer sampling. Also the length of the recording
plays a big role, since the user can either save small parts or have the surrounding’s
noise mapped to the structure continuously. We decided to save a recorded clip in our
data that can be replayed and not only react to the current sound level. But then even
more questions came up since the algorithm worked with the raw microphone data. We
had to consider the sampling rate and the channels of the recording microphone as well.
This influences the size of the array to which the recorded data will be saved. Addition-
ally, defining parameters like the averaging rate for creating a smooth waveform had to
be considered. If the step is rather small, the discrete samples will show rapid changes,
however, if it is too big, single spikes in the wave would get lost in the smoothed data.
The generated sound wave influences the particle system of Cuby. So, the recorded data
also must be playable with the recorded audio clip in sync. This was achieved by im-
plementing a class that broadcasts the volume changes at the same rate they have been
recorded before. The recorded audio clip and the smoothed recording data are then al-

6https://www.mapbox.com/

2. Project Details 8

Figure 2.1: This image shows the normal map obtained from the Mapbox API applied
to the cube, as well as the user interface to control the map’s zoom factor.

ways replayed simultaneously, however, the actual recording can be muted. To represent
the sound wave in the menu and on the info card, a texture was created that adjusts to
the recording length and maximum amplitude of the data. Although, the sound wave
originally was well represented by the Visual Effects Graph, this did not end up in the
application. The VFX Graph allowed us to spawn a huge number of particles even on
mediocre processing hardware, and it also provides functionality to change these parti-
cles’ parameters easily after they have been spawned. When everything in the project
was put together later on, however, we realized that the combination of ARFoundation,
URP and the VFX graph was not yet optimized for smartphone usage and produced
bad artifacts and shears of particles across the screen. Temporarily, this representation
is replaced with Unity’s old particle system, but it is planned to upgrade to the working
VFX graph version as soon as its ready from Unity.

2.1.3 Colors
Since the colors were an incentive for this project we wanted to extract them as ac-
curately as possible. AR Foundation offers a way to get the latest camera image on
the CPU which was the initial step towards this goal. We then save this raw data to a
texture and process it with our custom computer vision algorithm. However, this was
harder than expected because color is not simply color. One algorithm that we found

2. Project Details 9

(a) (b) (c)

Figure 2.2: Recording the soundscape (a), the resulting waveform (b) and a different
recording which is also applied to the structure (c).

first looked promising on test images with enough colors and contrast. But it did not
work at all with dull indoor captures. It was based on plotting all the pixel’s accumu-
lated color information in three-dimensional space and then clustered them either by
fixed grid steps or by using k-means clustering. Since our mobile phones’ cameras did
not produce as bright and colorful images, we had to find a different way of creating our
color histograms. By combining various research algorithms which all were not quite
right for our use case, we then came up with an implementation that creates a his-
togram from HSV instead of RGB colors. This means that the algorithm fills bins in the
cylindrical HSV color space representation with the pixels’ values and counts the most
populated bins. This way the hues are retained while they were averaged in the pre-
viously described implementation. The results are far more accurate and we apply the
7 most dominant colors of the resulting histogram to our structure’s particles. Again,
the same problem as in 2.1.2 occurred, so we later had to exchange our VFX graph’s
particle implentation in Unity’s old particle system.

2.1.4 Timestamp
The timestamp feature adds a sun or a moon. It is placed in the Cuby’s orbit depending
on the current time when adding the feature. The sun and moon optionally leave a
golden glow or blue shine on the cube’s surface. Deciding whether a time of day is
during daylight or in the night time was simply done by a threshold for morning and
evening. It was implemented so that twelve hours of sunlight map to 180 degrees in a
hemisphere around Cuby. The moon is treated equally, which means that the sun will be
in the zenith at noon while the moon will reach its highest point at midnight. To achieve

2. Project Details 10

(a) (b)

Figure 2.3: The hue-value-saturation space (a) was used to create histograms (b) of the
camera’s image and extract the dominant colors.

(a) (b) (c)

Figure 2.4: An example image (a) with its dominant colors extracted in (b) and a
selection that starts to appear on the structure (c).

the rotation in the orbit as well as the correct orientation of their respective directional
lights, the two objects are translated relatively to their empty parents transform. In
Unity, this creates a way to treat their parent as the anchor around which the whole
object and light can be rotated.

2. Project Details 11

(a) (b)

Figure 2.5: The moon (a) and the sun (b) are instantiated in Cuby’s orbit and provide
information about the time of day when the structure was created. A bright yellow and
white light are optional.

2.1.5 Age
Cuby ages. By opening the application for the first time, Cuby’s life starts and its
birthday is saved. This value, however, is fixed and cannot be changed by the user.
With the days passing by, the spawn rate of the particles increases.

simply get the timestamp of the phone - max age 100 days

2.2 Info card
The info card is designed to resemble a museum label which shows information about
the structure. The description changes dynamically when adding features. Thus, at the
beginning it is a blank square that can be filled with feature descriptions. When enabling
a feature in the menu, the card is automatically updated and shows the according
information.

2. Project Details 12

Figure 2.6: An “old” Cuby (with a maximum of 100 days) as it is shown in this image
will exhibit a lot more noise and particles then a freshly spawned one.

Figure 2.7: The info card summarizes all the information yet applied on the structure.

2.3 Serialization
Since Cuby was designed to be a representation of a surrounding which should be
comparable with other Cuby structures, sharing the information as a bundle was desired
as well. Therefore, serialization and deserialization of all the data and parameters was
necessary. However, in many cases only the absolutely needed information was stored.
For instance, instead of including the location’s texture maps in the file and creating
some kind of archive, only the coordinates were saved and the textures retrieved by
performing another map query on loading the data.

2. Project Details 13

Microsoft strongly advises against using binary serialization due to security reasons
in [3]. Therefore, we are currently using Unity’s built-in JSON Serialization to convert
the feature data to a convenient format. Research showed that there is no uniform way
to access a file saving dialog on mobile devices within Unity. So, a freely distributed file
handling plugin7 was used and worked immediately out of the box.

2.4 Sharing
The Cuby’s data is saved as a JSON file which can simply be sent to friends like any
other file. For this, another great tool from a GitHub repository8, that enables native
file share on both mobile platforms, was used.

2.5 Problems
Time issues were generated through the lack of AR Foundation not providing any remote
testing software. Therefore, all AR-related development had to be built from Unity and
sent to the phones for testing every time we changed any AR-related feature. We tried
to finish as many tasks in the Unity Editor as we could, like building a well guided user
interface. But sticking to the PC led to a bigger problem, that we encountered very late in
the process. Even worse is the fact that Unity’s Shader Graph and Visual Effects Graph
from the new Render Pipeline are not compatible with mobile devices yet. The only
possible solutions for the time being are to either wait for Unity to release a compatible
version or, in the meantime use a fallback version and implement a similar solution with
Unity’s old capacities. But why use an outdated system when Unity itself is promoting
the new Shader/VFX Graph and the project can or even should be updated when it
is production-ready? Nevertheless, we wanted a working solution on the smartphone in
reasonable time so we had to fall back on the old versions.

2.6 Android Version
Since we already encountered many time-consuming challenges, coming up with new
algorithms and adjusting to Unity’s possibilities, one problem remains unsolved: the
application is only available for Android for now. Due to us having problems with
Apple’s development integration and not having a macOS based PC around, we were
not able to build and test Cuby on any iOS powered phone yet. However, everything is
implemented for both operating systems and built for the common ground, so it should
not be too feasible to get Cuby to run on iPhones as well.

The Android version on the other hand is well tested and has been used for all
mobile development in this project. Due to the aforementioned issues, the results do not
look like they were intended to look like and are replaced by slightly inferior visuals.
Nevertheless, it is great to see the application in action through a phone’s camera.

7https://github.com/yasirkula/UnitySimpleFileBrowser
8https://github.com/yasirkula/UnityNativeShare

2. Project Details 14

Figure 2.8: A logo was designed for the app which resembles a simple cube and picks
up on the color scheme of the application’s UI.

(a) (b) (c)

Figure 2.9: Screenshots of the final Android application showing the Colors feature (a),
Soundscape (b) and the saving option’s menu (c).

Chapter 3

System Architecture

Apart from the previously mentioned packages, APIs, software and other gimmicks that
have been used in making this project possible, there have been a few considerations
that shaped the architecture of the application.

3.1 Statecharts
One of the major decisions fell on using statecharts to represent the application’s flow.
As described in [9] they are an improved version of state machines that allow all project
partners to have a common view on what is going on inside of the software. Not only
can they be represented visually as a kind of flow diagram, but they also immediately
translate to code. Additionally, they provide a highly readable syntax to formulate what
should happen when during their execution. Again, using this kind of state handling
might be an overkill, but it immediately demonstrated its big advantage when outlining
the overall flow (initialization, idle state, feature menu and option menu) of Cuby.
Unfortunately, statecharts are only very advanced in the field of javascript and not
readily available in .Net development. But thanks to this GitHub repository [5] we were
able to use its basics in Unity. This facilitated state handling and made the whole process
less error-prone.

The code that is responsible for Cuby’s application flow subsequently ended up being
rather short:

1 public override StatechartDefinition<NoContext> Behaviour => Define.Statechart
2 .WithInitialContext(new NoContext())
3 .WithRootState(
4 "Flow"
5 .AsCompound()
6 .WithInitialState("StartMenu")
7 .WithStates(
8 "StartMenu"
9 .WithEntryActions(

10 Run(() => startMenu.gameObject.SetActive(true)),
11 Run(() => RequestPermissions()))
12 .WithExitActions(
13 Run(() => startMenu.gameObject.SetActive(false)),
14 Run(() => HUD.instance.HideMessage()),
15 Run(() => Cuby.instance.Resize()))

15

3. System Architecture 16

16 .WithTransitions(
17 On(PlaneTapped).TransitionTo.Sibling("Idle")
18 .WithActions<NoContext>(PlaceCuby)),
19 "Idle"
20 .WithTransitions(
21 On(ToggleExtensionMenu).TransitionTo.Sibling(

"ExtensionMenu"),
22 On(ToggleOptionMenu).TransitionTo.Sibling("OptionMenu"),
23 On(PlaneTapped).TransitionTo.Self
24 .WithActions<NoContext>(PlaceCuby)),
25 "ExtensionMenu"
26 .WithEntryActions(
27 Run(() => extensionMenu.ShowNavigation(true)))
28 .WithExitActions(
29 Run(() => extensionMenu.ShowNavigation(false)))
30 .WithTransitions(
31 On(ToggleExtensionMenu).TransitionTo.Sibling("Idle")),
32 "OptionMenu"
33 .WithEntryActions(
34 Run(() => optionMenu.ShowNavigation(true)))
35 .WithExitActions(
36 Run(() => optionMenu.ShowNavigation(false)))
37 .WithTransitions(
38 On(ToggleOptionMenu).TransitionTo.Sibling("Idle"))));

This statechart definition just has to be paired with a few event definitions that can
be invoked at any other point:

public void ExtensionMenuClicked() => SendToStatechart(ToggleExtensionMenu);
private static NamedEvent ToggleExtensionMenu = Define.Event("ToggleExtensionMenu");

public void OptionMenuClicked() => SendToStatechart(ToggleOptionMenu);
private static NamedEvent ToggleOptionMenu = Define.Event("ToggleOptionMenu");

private static NamedDataEventFactory<Pose> PlaneTapped =>
Define.EventWithData<Pose>("PlaneTapped");

3.2 Features
The features include the Colors, Location, Timestamp, Soundscape and Age which
are all based on the same class. Whenever any feature changes its parameters, asyn-
chronously acquires new data or is removed, events are invoked. This is the basis
for all the communication within the application. The different menus, the visualiza-
tion as well as the info card subscribe to the static events Feature.onChanged and
Feature.onRemoved. The respective feature is passed as the event data from which
the subscribers retrieve their new values. This way, every necessary recipient is notified
about changes and can decide on their own what to do with the information and how to
handle the new data. Additionally, features are described by the two flags exists and
enabled which can be used to exactly determine the status of a feature. The soundscape
for example can be enabled (i.e. activated) without having associated data, which would
return false for enabled.

3. System Architecture 17

3.3 Menus
All the feature’s menus are derived from the FeatureMenu base class which itself is of
type Menu. The Menu is a simple class that handles fading and activating CanvasGroup
components. FeatureMenu is interesting because it is itself implemented as a template
class which means that FeatureMenu<T> where T : Feature keeps a reference to ex-
actly their respective feature with the correct type and only reacts to changes in said
feature. The navigation is aligned in automatically adjusting layout groups which facil-
itate the addition of feature menus and option menus. The navigation button’s events
are simply handled in Unity’s inspector which open the corresponding menu.

3.4 AR Foundation
The necessary elements of ARFoundation to run a scene on a smartphone are the AR
Session, the AR Session Origin and the AR Camera. In our setup, these handle all the
AR-related tasks such as positioning and plane recognition, as well as the visualization of
augmented feature points and planes. Planes are set up to only be detected horizontally.

3.5 Other Classes
A few more helper classes have been implemented to aid in various tasks. Some of them
are briefly explained in the following section.
Cuby follows a singleton pattern which provides access to its data at any time.
CubyData is the backbone to the Cuby class where every necessary value is stored

and can be retrieved, grouped in nested classes which match with the features.
In addition, this class provides a few helping hands for serialization. Some Unity-
intern classes like AudioClip and Color can not be serialized to JSON by default
and have been equipped with fitting serialization helpers.

SaveSystem handles the saving and loading dialogs as well as accessing the JSON
serialization. This class also invokes and event when loading a Cuby’s data is
finished which causes the Cuby itself and all the features to update their values
to the newly loaded ones.

Permissions take care of mobile phone permissions. If the access to the camera, mi-
crophone, file system, location, etc. is not granted, some features will not work.
Unity’s own Android permission solution is quite error-prone which is why a sep-
arate plugin from GitHub1 has been used.

HUD a head-up display, which is figuratively used in this case for a screen space info-
center that consists of a single lined text output. This singleton allows every other
class to show the user a message through its static methods.

1https://github.com/yasirkula/UnityAndroidRuntimePermissions

Chapter 4

Summary

Experimenting with the device data and the parameters entailed new knowledge. Not
only in terms of augmented reality and mobile app development with Unity, but also in
each aspect looked into, like audio and image processing. AR foundation is a great base
technology to use but led to many issues which had to be resolved and need further
attendance in the future. Some feature’s visualization can be improved as soon as the
Universal Render Pipeline supports the VFX Graph on mobile devices.

It has been challenging to figure out how all components of a room can be captured
in one structure. This is definitely the weakest point in the application, which can be
extended by lots of features or differently used features. Various methods of representing
the surroundings have to be tested by users and can therefore produce a more meaningful
and better blended structure. Nevertheless, the well-constructed architecture which has
been established is a good foundation for further extension towards the projects initial
goal.

18

References

[1] ARBrush. url: https://github.com/laanlabs/ARBrush (cit. on p. 4).
[2] 4th wall ar app. 2018. url: https://nancybakercahill.com/4th-wall-ar-app (visited

on 04/02/2020) (cit. on p. 5).
[3] BinaryFormatter security guide. url: https://docs.microsoft.com/en-us/dotnet/st

andard/serialization/binaryformatter-security-guide (visited on 04/02/2020) (cit. on
p. 13).

[4] Innerspace. url: https://www.innerspace.eu/ (visited on 04/02/2020) (cit. on p. 5).
[5] Bernhard Mayr. url: https ://github .com/bemayr/Statecharts .NET (visited on

06/11/2020) (cit. on p. 15).
[6] Moto Wall. 2013. url: https://www.heavy.io/motowall (visited on 03/25/2020)

(cit. on pp. 4, 5).
[7] Organismus. 2019. url: https : / / www . hbksaar . de / projekte / details / organismus

(visited on 03/28/2020) (cit. on p. 5).
[8] Revolver-Rotationen 2019. 2018. url: https://www.hbksaar.de/projekte/details/rev

olver (visited on 04/01/2020) (cit. on p. 5).
[9] Welcome to the world of Statecharts. url: https://statecharts.github.io (visited on

06/11/2020) (cit. on p. 15).

19

https://github.com/laanlabs/ARBrush
https://nancybakercahill.com/4th-wall-ar-app
https://docs.microsoft.com/en-us/dotnet/standard/serialization/binaryformatter-security-guide
https://docs.microsoft.com/en-us/dotnet/standard/serialization/binaryformatter-security-guide
https://www.innerspace.eu/
https://github.com/bemayr/Statecharts.NET
https://www.heavy.io/motowall
https://www.hbksaar.de/projekte/details/organismus
https://www.hbksaar.de/projekte/details/revolver
https://www.hbksaar.de/projekte/details/revolver
https://statecharts.github.io

	Aims and Context
	Initial Focus
	Device Data
	Visual Representation
	Technical Starting Point

	References

	Project Details
	Features
	Location
	Sound
	Colors
	Timestamp
	Age

	Info card
	Serialization
	Sharing
	Problems
	Android Version

	System Architecture
	Statecharts
	Features
	Menus
	AR Foundation
	Other Classes

	Summary
	References

