Interactive Augmented Virtuality
Project Report

Marlene Mayr

February 8, 2021

Abstract

In this project, the integrated cameras of modern virtual reality headsets are used
to create windows into the real world. This integration enables common interactions
with everyday objects while being present in a virtual environment. For example,
it is possible to draw on a whiteboard or optimize an extended reality application
in real-time on the computer.

Contents

1 Introduction

2 Augmented Virtuality
2.1 Technology Stacko
2.2 Render Pipeline oo
2.3 Stencil Objects

3 Interaction

4 Implementation Details
5 Applications

6 Summary

References

(39

[ST=R=EN

B H g m =

Chapter 1

Introduction

As extended reality (XR) is becoming increasingly popular among consumers, several
variations of the technology are emerging in research. Some of them are entirely new
concepts, while many others have been around for some decades. These former findings
are reused in many applications due to evolved hardware.

Augmented reality (AR) displays digital content on top of the real world. This way,
users can still interact with their real surroundings and familiar objects that are not
part of the application. On the other hand, virtual reality (VR) captures digital content
in a virtual surrounding. With this technology, users are usually more immersed, and
there is more potential to use the virtual space. Augmented virtuality (AV) can be
used to combine both worlds. This project uses a superimposed camera feed to provide
windows into the real world. The goal is to interact with real-world objects through
this method. For this purpose, the HTC Vive Pro is used. This head-mounted-display
(HMD) accesses the tracking cameras for pass-through AR.

Digital Content
< Real World
Virtual World

Display

Yl

Figure 1.1: Augmented virtuality combines the real and the virtual world. This illustra-
tion depicts what is rendered to the display.

Chapter 2

Augmented Virtuality

Augmented virtuality is the core of the project. Its technical setup connects the headset,
the real and the virtual world.

2.1 Technology Stack

All the tools needed for augmented virtuality exist in theory but become incompatible
and slow the more specific the application is. The project is built with Unity as its base.
Several plugins and SDKs have been added throughout the process.

Steam VR provides a framework for the whole tracking system of the HMD. On ex-
ecution, Unity connects the rendered output to the Steam VR application, which
also returns information about the tracking to Unity via an additional plugin.

SRWorks is an SDK and a Runtime provided by HTV Vive to access the device’s
cameras. The SRWorks Runtime integrates with Steam VR, extracts the cameras’
feeds and passes them into Unity to the respective SRWorks plugin.

Open Broadcaster Software (OBS) captures the computer screen and connects it
to Unity as a virtual camera. This input is mapped to a texture in the running
AV application.

2.2 Render Pipeline

The core structure in Unity and its use in rendering is illustrated in figure The
Steam VR Unity plugin retrieves the headsets transform and adjusts the position of
the virtual camera. This camera is similar to a regular VR setup in Unity but does
not render directly to the HMD. Instead, its output is rendered onto a render texture.
This Unity-specific texture can be set as any camera’s target, is usable in materials
and in this case serves as an additional render pass. Simultaneously, SRWorks captures
the camera content and forwards it to the respective SRWorks plugin in Unity. There
follows an algorithm to undistort the image because the cameras are wide-angled for
better tracking. The undistorted image is then also added to the render texture. This
render texture is placed in front of another virtual camera in Unity. This is the camera
which finally renders to the device.

2. Augmented Virtuality 5

SteamVR unity plugin virtual camera

/ Dj render texture render camera
h P

SRWorks runtime SRWorks SDK
(X3 e
T T

Figure 2.1: The virtual and the real cameras are aligned with each other. Their content
is combined to render the AV output to the displays.

Since there are two cameras and two displays involved, this process happens twice.
There is one rendering setup for the left and one for the right eye, which results in
multiple virtual cameras involved in the process. Unfortunately, the cameras’ feeds’ can
not be easily combined into one image to reduce processing time.

2.3 Stencil Objects

When it comes to extracting parts of the cameras’ feeds, there are multiple ways to
create a compound environment. These include various computer vision algorithms for
analyzing the video. However, this project does not use any of these because they can
be very complicated and resource-intensive, especially on a stereo camera feed. Since
a camera image is only two-dimensional and the Vive Pro does not come with depth
cameras, this also means that any depth information would be lost.

Stencil Depth Color

—
NS

Figure 2.2: This figure illustrates the use of buffers. The reference object provides place-

ment and depth information while the camera image is drawn only on relevant fragments.
The result is a masked camera feed where the window is placed.

As an alternative, a virtual object is aligned with the real world, which then masks
the cameras’ videos. For each window, a reference object is placed in the virtual world.
This object defines the location and scaling of the camera feeds’ pixels to remain. The
objects’ shader writes to the stencil buffer, an extra buffer provided by Unity. Details
can be found in the documentation in . Any shader can compare any desired value

2. Augmented Virtuality 6

against the stencil buffer to determine if a fragment will be dropped from rendering.
The crucial part of this project’s shader code is:
ColorMask 0O
ZWrite On
Stencil{
Ref 1
Comp always

Pass replace

}

This functionality is also illustrated in figure The reference object writes the
value 1 to the stencil buffer, and the SRWorks camera image only adds color where
the stencil buffer equals 1. Additionally, the reference object writes to the depth buffer.
Having a three-dimensional shape with depth information is a significant advantage of
the implemented method. Otherwise, the camera feed would either appear always on top
or always behind all the virtual content, depending on the camera setup. The virtual
object also contains a collider so that virtual objects on top also stay on top in the
compound world.

Chapter 3

Interaction

Various input devices can be used for digital and real surroundings simultaneously. The
project is set up for the use with Vive controllers. Keyboard and mouse can be used on
the computer screen but are not mapped in the virtual world. A regular xbox controller
triggers the same events through Unity’s input system. In this scenario, analog input
such as a pen are involved as well. All these interaction modalities have to be mapped,
so they make sense for potential users.

Since it can be cumbersome to switch the input device between real and virtual
parts of the world, hand gestures have been added to interact with the virtual content.
Two plugins are taken into consideration. The currently used Vive Hand Tracking SDK
works well for the Vive Pro but will eventually be exchanged with the Windows Mixed
Reality Toolkit (MRTK). This platform-independent toolkit might facilitate the change
to a different headset if needed throughout the process. MRTK is also very feature-rich.
It not only includes hand gestures but also a lot of UI presets, speech input and some
handy development tools for logging and debugging.

MRTK

MIXED REALITY
TOOLKIT

Figure 3.1: This figure demonstrates some common spatial interaction possibilities pro-
vided by the Windows Mixed Reality Toolkit. Image source: .

Chapter 4

Implementation Details

Various implementational details improve the usability and visual coherence in AV.

The camera feeds can already be adjusted in brightness, contrast, saturation and
white balance to better fit the virtual environment. To further enhance the visual per-
ception, it is desired to blur the lines between the two worlds. One of the possibilities
is to include three-dimensional frames around the reference objects, just like picture
frames. Another option is to use similar overall colors and shapes in the virtual sur-
rounding to match the real world. A different approach is to adjust the virtual cameras’
resolution to fit the headset’s cameras better. This might worsen the experience but
enhance visual coherence and is worth a try.

Locomotion is another unsolved usability issue so far. In regular VR applications,
the user is teleported through the world. However, the windows should stay in place
and still approximately fit the virtual surroundings. Therefore, a movable virtual world
alone will not solve the problem.

Chapter 5

Applications

Figure 5.1: In this demo, the object reference’s shape is a cube which frames a physical
desk. Additionally, a computer screen is streamed into the virtual environment. This
application allows the user to develop and adjust a virtual reality application directly in
Unity without removing the headset.

The system described in the previous chapters is the basis for interactive AV. Proto-
typical applications will demonstrate the benefits of this interaction method. There is a
vast amount of possible use cases, some of which will be implemented. The project con-
tains three demo applications so far. The windows into the real world are used to write
onto a symbolic flipchart. The first demo includes a three-dimensional data visualization
on Covid-19 cases, deaths and tests worldwide. It allows users to analyze the data and
take notes on a whiteboard or a flipchart. The second one uses the three-dimensional
world as a drawing reference. It shows a desk lamp that can be replicated on paper with
a regular pen.

The third demo consists of a cube-shaped reference object, a computer screen feed,

5. Applications 10

and a virtual furnished apartment. Assuming that this environment is part of an ongoing
VR project, the developers can change parameters, settings and code in Unity just as
they are used to. However, with this method, all of this can happen within the VR
headset for better perception of the environment.

This approach can be extended for business use cases. Especially during the last
year, virtual collaboration and meeting tools flourished. Participants could bring along
their real desk, a flipchart or a whiteboard or possibly even a sofa for a more comfortable
experience.

Chapter 6

Summary

Augmented virtuality has become an appealing concept for interactive virtual environ-
ments thanks to improved VR headsets with pass-through AR support.

The concept of enabling interactions with the real world while using VR applications
has been implemented prototypically in Unity with various plugins. These will be the
basis for analyzing the benefits of this interaction method. The existing, upcoming and
possible demo applications offer a lot of potential for expanding the project. They may
be further categorized based on the amount of interaction with the real and the virtual
surroundings.

11

References

[1] Yoon Park. Introducing MRTK for Unity. Version 2.5.4. May 2019. URL: |https://d
locs.microsoft.com /en-us/windows/mixed-reality /develop /unity /mrtk-getting-started

(cit. on p.[7).
[2] Unity Technologies. ShaderLab: Stencil. Version 2019.4. Jan. 2021. URL: |https://d
locs.unity3d.com/Manual/SL-Stencil.html] (cit. on p. [f).

12

https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/mrtk-getting-started
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/mrtk-getting-started
https://docs.unity3d.com/Manual/SL-Stencil.html
https://docs.unity3d.com/Manual/SL-Stencil.html

	Introduction
	Augmented Virtuality
	Technology Stack
	Render Pipeline
	Stencil Objects

	Interaction
	Implementation Details
	Applications
	Summary
	References

