Stonehenge

Marlene Mayr
S1910629016

ABSTRACT

Stonehenge is an augmented reality game challenging players to
recreate structures with building bricks. The project was a collabo-
ration with Eric Thalhammer to create a digital version of a board
game for smartphones.

1 INTRODUCTION

Stonehenge is based on the board game classic Make 'N’ Break by
Ravensburger [1]. The concept of this game is simple: the players
try to reconstruct building instructions with wooden blocks and
get more points the more structures they successfully build during
a given amount of time. It is a mixture of dexterity, remaining
calm during the stress and taking on the challenge. Our aim was to
develop a similar application that can be played on a smartphone,
which provides equally as much fun and makes use of the benefits
of three-dimensional space. In the end an interactive, polished way
to have fun in AR should be presented.

2 GAME DESIGN

The main concept follows the original gameplay with a few tweaks.
Players have to build structures with rectangular blocks, the bricks.
The building instructions are shown as miniatures of what has to be
built, but the structures are not limited to planar building like in the
original. Instead, three dimensional structures can be built as well,
but the instructions stick to 90 degree, block-like alignments. The
score is not directly evaluated by the amount of structures that are
successfully built but has been adjusted to represent the difficulty
level and, therefore, is multiplied by the amount of bricks neces-
sary for the structure. Similarly to arcade games, the players get a
small time bonus upon finishing a structure which gives them the
chance to earn even more points through successful building. The
achieved score is not only saved during the round but allows for
competition through an integrated online high score board. Further-
more, upgrades to the project like multiplayer support and several
accessibility features already lie ahead.

Internally, the building instructions are called recipes and the
building panel that checks for correctness is called the mold. We
figured that this comparison fits the needs and functionality of said
components.

3 IMPLEMENTATION

During the implementation, we developed multiple features nec-
essary, always trying to follow good practices and producing a
well-structured project architecture.

* The project has been set up with Vuforia in Unity to quickly
get started. This also allowed for easy testing during the devel-
opment phase directly in the Editor view with any webcam.

* Recipes are saved as Scriptable Objects, special data con-
tainers provided by Unity which automatically serialize their
content and can easily be referenced in objects in the scene.

Welcome!

Scan your target marker no!

Figure 1: The screen appearing at startup as long as the tracker has
not been detected.

Figure 2: The main menu already previews the playing area in the
background and information on the mechanics of the game.

Figure 3: This screenshot shows the recipe on the left and a brick
being picked up. However, the playing area can be rotated by moving
the tracker.



* X %
HIGHSCORE

YOUR SCORE

.5 3000 GANDALF 12.05.2020
. 1200 FRODO 12.05.2020
ERIC

600
600 JOE
600 BILBO

PERSONAL HIGHSCORE

PLAY AGAIN om0 RADAGAST 13052020

Figure 4: After the time runs out, the application presents the personal
score and an online high score board with the reached position.

The content is saved as a collection of bricks which in turn con-
tain the information for the correct identifier (which is mapped
to the color of the bricks) and the positioning. Multiple recipes
are referenced in the cookbook, a GameObject which handles
the retrieval of the next recipe that has to be built. The selection
of the recipes follows the order they are saved in the cookbook
but can be randomized as well.

It is important to note that the recipes only save the data but
no objects. Therefore, when the recipe is loaded, a visualizer
takes all the information and places bricks according to the
data. These bricks have the same material as the movable ones
but are instantiated without any colliders or physics body since
they need not comply to any physic input. Additionally, the
visualization is scaled to resemble the miniature, instructional
feeling.

The game flow is handled by a custom state machine that fol-
lows the state pattern of software design. It switches through
the various states in the game which have their own implemen-
tation of handling events like the loss of tracking and menu
inputs. This allows the application to guide the user through the
application with the help of on-screen menus and HUD-texts
since AR applications are not as wide-spread and need more
explanation about the interactions than regular mobile games.
The application starts in a state which tells the user to point the
device at the tracker because the game would not be able to
start otherwise. The HUD is represented in Fig. 1. Afterwards,
a menu like Fig. 2 appears with brief instructions on how to
play the game. This is the point where further adjustments
could be made if settings are necessary in future upgrades of
the project. When the user clicks on "Start game" the menu
disappears and while the game area is already visible, a short
countdown gives the user some time to get accustomed to the
surrounding. Then the main game loop handles all interactions,
the checking of the built recipes, score, timer and providing
new recipes on success. Picking up bricks is shown in Fig. 3.
After the time runs out, the user is redirected to a score panel.
When entering a name, the score will be uploaded to the online
high score board displayed in Fig. 4. The user can then take
up this new motivation to get better and click "Play again".
Upon clicking, the state machine activates the game state again.

The user interface that helps guide the player through this
process follows a simple flat design provided by my team
partner. This style accentuates the difference between the
augmented world which is combined with the real world and
the screen space menus. The Ul scales with various screen
sizes and especially aspect ratios to always fit all important
information on the screen. A careful approach and some testing

was needed because modern smartphones come in many sizes
and ratios.

* To match the bricks with the real world we tried to keep the
material and lighting as close as possible to painted wooden
blocks in an indoor environment. The custom material was
adjusted to match the original game and transfer a similar
playful look and feel. The scene is lit by a directional light and
an indoor image sphere as a skybox for environmental lighting.

* As already mentioned before, the bricks always have to be
aligned in 90 degree angles to each other. We developed a
system that would allow for easier verification of the structures
but also helps the user control the bricks. It can be rather
tedious to exactly place objects in augmented reality due to
spatial recognition and the movement of the device. We did
not want this to become an issue or diminish fun because of
difficult brick handling. Therefore, a voxel space was intro-
duced. Voxels represent data points in a three-dimensional
space similar to coordinates but with a unified sizing and the
representation of volume. In our case, every point in the 3D
scene can be mapped to a voxel to get the information in which
voxel grid place it is positioned. The scaling of this voxel space
is adjusted to fit our playing area so that a brick always has the
size 1 x 1 x 3 voxels. The brick itself contains three anchor
points, each positioned at the center of one of these voxels.
These anchors are used to match the brick to its position. With
this technique, the matching of brick is rotation independent.
No matter if it is rotated by 180 degrees, slightly tilted or even
rotated lengthwise, the brick will always return the same three
voxels that it occupies as its position values. These are the
values stored in the recipe, which is why there also exists a
conversion from voxel space back to world space to be able to
place the bricks. Verification of recipes is eased because only
the voxel values have to be checked and not all possible posi-
tion and rotation values within certain thresholds. Interaction
with the game is facilitated because we snap the brick to the
voxel grid when dropping. This way, when the user drops two
bricks just near to each other and slightly tilted, they will end
up exactly aligned. The snapping is interpolated over a short
time to not be visually distracting.

* Although the voxel space brings a big advantage, the recipe-
mold checking still has to take into account multiple poten-
tial problems. First of all, it is not executed every frame but
interval-based to reduce computing times. Additionally, it is re-
dundant to check all the bricks when there already is a missing
brick compared to the recipe. Similarly, when checking a brick
with a specific identifier and at least one voxel does not match,
it means that the whole brick does not match the comparative
one in the recipe. In these cases the methods immediately
return, which again saves computing power. To assure that a
structure can be built anywhere on the mold area, the brick
data is not saved in the world’s voxel space but relative to a
reference brick. Which means that the brick with identifier 0
is always part of the recipe and all the voxel coordinates are
saved and matched relatively to its position. Due to this im-
plementation, the reference brick always has the voxel values
(—1,0,1) in the direction of its major axis.

4 ADDITIONAL IMPLEMENTATION OF DEVELOPMENT
TooLs

Many of the aforementioned features are hard to imagine without
visualization or help, even as the developer. For this purpose, sev-
eral development tools were implemented that help building the
application and creating content.



i

Figure 5: The brick gizmo shows the voxels that a brick occupies and
tells the developer where the brick will snap to.

* The state machine exposes two fields in Unity’s Inspector: the
initial state and the current state. This way, during testing,
the developers can enter the game at any desired point and
do not always have to run through the whole application flow
to get where they want. For testing the state handling, the
current state is displayed to check if every transition is executed
correctly.

Bricks in the scene view are shown with custom gizmos as in
Fig. 5. The three anchors inside of the brick are represented
with spheres and the voxels it occupies are drawn as wired
cubes on the outside. This helps a lot to see where the brick is
effectively positioned and what voxel values will be saved.

Additional tools have been added to align the bricks to these
voxels during the editing phase, which snaps either the selected
or all the bricks in the scene to its nearest voxel positions and
rotations. These tools can be accessed via the /Tools menu
or via the shortcuts A1t + A and Alt + s.

With the help of this visualization and alignment, new recipes
can easily be built. Developers can place the bricks with cor-
rect alignment and see exactly what the recipe will look like.
The most complex tool is the one that saves this recipe as a
scriptable object. It can be accessed by clicking on a cookbook
in the hierarchy. These have custom editors which add a few
buttons to the inspector shown in Fig. 6. The most important
of which is the "Save and add current recipe" button,
which performs multiple actions in the background. It gath-
ers the information of all the currently places bricks in the
scene and saves the values to a new recipe instance. This will
be saved as a scriptable object into the specified /Recipes
folder. Furthermore, the cookbook’s collection of recipes will
be expanded by resizing and adding the new recipe, but also
applying this change to the cookbook instance. This also works
in the scene view, even though the cookbook is a prefab in-
stance. With this tool, the content creator can easily save and
add newly built recipes to the game with one click.

ISSUES

Several issues related with Unity occurred during the implementa-
tion.

* We ran into serialization problems when creating the recipes
which led to recipes with missing or faulty data. After some
research we found out exactly what unity can and can not
serialize and realized that some changes had to be made in
the custom brick and voxel classes to keep the data. All
classes must have the [System.Serializable] attribute and
all fields must either be public or again have an attribute called
[SerializeField]. Static fields can not be serialized at all.

¥ # Cookbook (Script) e

Script Cookbook
¥ Recipes
Size 3
Element 0 Grrecipe (Recipe) @
Element 1 Grecipe 1 (Recipe) @
Element 2 myrecipe 2 (Recipe) @

save and add current recipe
Ioad all recipes
open recipe folder

clear

Figure 6: The custom cookbook editor provides the functionality to
save and apply recipes.

» Early on in the project we encountered physics issues in Unity
when trying to stack multiple RigidBody objects on top of each
other. The colliders start to overlap when there is too much
weight applied, even when using regular box colliders. After
some research we found out that this is a common problem
and there are some ways to improve it but no fix. This was
another reason why we implemented the voxel snapping.

* The determination of the correct rotation and position when
snapping to the voxel grid led to some errors where the brick
turns more than 90 degrees. This was changed to always
choosing the nearest value to straighten the brick and taking
both positive and negative directions of the axes into account.

* A related issue occurred in the rotation when snapping, which
has a different underlying problem. All the rotations can be
exactly one direction or mirrored, except for the lengthwise
rotation. The brick can be placed in four possible alignments
along its major axis. So, this had to be handled specifically.

6 POSSIBLE EXTENSIONS

¢ The recipes can be organized by difficulty or any other at-
tribute. This can easily be done by assigning them to various
cookbooks and loading only the necessary collection. Since
the recipes can be freely assigned, this can be done without
specifying the attributes in code.

* Checking a recipe is currently only supported in one direction,
namely the same as it is displayed by the visualizer. This can
be improved by matching multiple constellations of the voxels
because the mold provides different relative voxel data when
the whole structure is rotated.

* The application can be extended with a multiplayer support
via a local network. The gameplay implementation, however,
is still open for discussion. The players either build the same
structures in competition but everyone on their own playing
area or the players get different recipes that share bricks.

¢ Because we discovered that playing around with the bricks
independent of competition is fun as well, we would like to
add an edit mode in which the user can build recipes and even
save, share or submit them. This would also help the content
creators because the community can help with recipe creation.

* The whole application currently is scaled to fit on a table but
it might be fun to play a bigger version on the floor as well.
Although the scaling can easily be adjusted to quickly imple-
ment this feature, this would require settings with a toggle for
scaling and, depending on the continuous tracking quality, also
a different tracking image.



During the implementation we also figured out that some of the
adjustable modules might be beneficial for specific people. For this
reason, there are a few accessibility features that we want to add and
evaluate:

* People with less dexterity or problems in spatial awareness
might benefit from self-aligning bricks. Currently only the
dropped brick snaps to the voxel grid. When moving the
device or other bricks near placed ones, however, the bricks
move freely according to physics. With this feature the player
could still knock down the whole structure but does not have
to be as careful when placing bricks on top of or next to each
other. When dropping a brick, all placed bricks will re-align
themselves automatically.

* Because we both know of people with some kind of color
blindness we want to address this issue as well. I even know of
one case where the player would repeatedly lose in the original
board game because of this problem. The current implemen-
tation is already based on color palettes as predefined data
containers for the colors of the bricks, but it only contains the
predefined colors. Additional palettes can be set up for various
grades of color blindness and similar visual impairments and
then made exchangeable through a settings menu.

7 CONCLUSION

After multiple tests on our smartphones we agree that the game
quickly sparks the competition within oneself to get better. Steering
the bricks is fun, regardless of the competition and we are waiting
for more recipes to test our skills.

REFERENCES

[1] A.Lawson and J. Lawson. Make ’n’ break. Board Game.



	Introduction
	Game Design
	Implementation
	Additional Implementation of Development Tools
	Issues
	Possible Extensions
	Conclusion

